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Purpose. To evaluate the influence of omission and replacement ap-
proaches for data below the limit of quantification (LOQ) on the
estimation of pharmacokinetic parameters for two-compartment
models when using nonlinear mixed-effect models.
Method. Nine data sets were simulated according to a two-
compartment intravenous bolus model with interindividual and re-
sidual variabilities, and a sparse sampling strategy was adopted. The
data sets differed with respect to area-under-the-curve (AUC) ratio
(0.1, 0.2, 0.3) and half-life ratio (0.03, 0.1, 0.3) between the distribu-
tion and elimination phases. For each of the nine data sets, six re-
duced data sets were created by omitting 5%, 10%, 20%, 30%, 40%,
or 50% of the lowest concentration values. For each of the reduced
data sets only one simple correction procedure to handle observa-
tions below LOQ was applied. All the values below the LOQ were
deleted, and the first one was replaced by half of the LOQ value.
Population parameters were estimated for each of the 117 resulting
data sets (one initial, six reduced, and six “corrected” data sets for
each of the nine cases). This approach was also applied on a real data
set of patients administered multiple IV bolus doses.
Results. For many of the data sets, particularly when a large fraction
of the data was omitted, one or several population parameters were
biased. When there was bias, clearance (CL) usually was underesti-
mated, whereas peripheral volume was overestimated. The param-
eters related to the distribution phase (central volume and intercom-
partmental clearance) were less affected, and changes were not sys-
tematic. The correction procedure markedly decreased overall bias
on the fixed effect of the parameters. Results for the real data were
similar.
Conclusion. Omission of data below the LOQ value may induce a not
negligible bias on fixed-effect parameter estimates. The influence of
the omission of values below LOQ was related to the underlying
shape of the concentration–time profile and fraction of omitted ob-
servations. The use of a simple replacement rule seems to reduce this
bias in estimates but needs further investigation.
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INTRODUCTION

Drug concentration measurements are based on analytic
methods that display imprecision and to some extent are de-
pendent on the underlying concentration. For most analytic
methods, limits of quantification (LOQ) are defined. The
lower LOQ is the lowest concentration of the standard curve

that can be measured with acceptable accuracy and precision
(1). According to International Conference on Harmonisa-
tion (ICH) guidelines (2), it is defined as 10 �/s, where � is the
standard deviation (SD) of the response and s is the slope of
the calibration curve. According to the Eurachem guide,
“LOQ is an indicative value and should not normally be used
in decision making” (3). However, in practice, measurements
below the LOQ are often not available for pharmacokinetic
analysis.

One pharmacokinetic analysis approach is nonlinear
mixed-effects modeling, also called “the population ap-
proach” (4). Mixed-effect models can appropriately handle
varying amounts of data from different individuals when the
amount of data is not linked to the individual’s parameter
values. When this is not true, and individual-specific charac-
teristics influence the amount of data available from an indi-
vidual, so-called informative missingness (5), the estimation
procedure is not guaranteed to produce unbiased estimates.
In that situation, a specific case of left-censored data (6), the
information carried by the last point is biased because of the
lack of information for subjects with measurements below
LOQ. Omission of data below LOQ will generally result in
informative missingness, as subjects for which concentrations
are lower or decline faster will have a higher probability of
having data below LOQ. Normally, in population analyses
with programs such as NONMEM (7), it is assumed that the
loss of information as a result of the omission of values below
LOQ will not bias parameter estimates. At least, most popu-
lation analysis publications that contain omission of data be-
low LOQ do not mention this potential problem. Two re-
cently published simulation studies (8,9) evaluate the influ-
ence of the LOQ in the field of population pharmacokinetic
analysis. In a one-compartment model, both showed that
omission of the data below LOQ does create a bias in param-
eter estimates and that correction procedures help in correct-
ing the bias. However, the simulation study investigating the
more common situation, more than one PK measurement per
subject (9), demonstrated that the bias in fixed effects param-
eter estimates was minor with omission of data below LOQ.
It is possible that this result is a consequence of the simple
structure of the one-compartment model.

The primary aim of the present work was to assess how
the structure of a two-compartment model could influence
any potential bias in parameter estimates secondary to omis-
sion of data below LOQ. A secondary aim was to evaluate if
a simple correction procedure helps in handling data below
the LOQ in the particular case of the two-compartment
model.

MATERIAL AND METHODS

To investigate the influence of the omission of the values
below LOQ, this study was based on simulated data sets; then,
as an example, the same approach was used on a real data set.

The Simulated Data Sets

All the data sets used were based on the same structural
model, a two-compartmental model with interindividual vari-
ability (IIV) on central volume (Vc), clearance (CL), inter-
compartmental clearance (Q), and peripheral volume (Vp)
and a proportional residual error model. Both interindividual
and residual variabilities were parameterized as exponential
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distributions with a coefficient of variation of 10% for the
residual error, 25% IIV on CL and Vc, and 30% on Q and Vp.

The differentiation between the data sets was based on
two ratios: (a) the ratio of the area under the curve (AUC) of
the distribution phase to the total AUC and (b) the ratio of
the half-life of the distribution phase to the half-life of the
elimination phase. For both the AUC and half-life ratios,
three values were defined: 0.1, 0.2, and 0.3 and 0.03, 0.1, and
0.3, respectively. The terminal half-life in all cases was set to
24 h for the typical individual and CL to 10, 20, or 30 L/h. The
pharmacokinetic parameters of the drug were then calculated
given the different ratio value combinations and the clearance
value (Table I).

For all data sets, the same number of patients and the
same sampling time schedules were used. One hundred pa-
tients were simulated, and a sparse sampling strategy with
four samples per subject was applied. Sampling times were
extracted from a uniform distribution over four sampling time
windows (0–24 h, 24–48 h, 48–72 h, and 72–96 h) with the
restriction of at least a 12-h delay between two samples for
the same subject. Thus, nine initial data sets of 400 points
were obtained. The nine originals data sets were simulated
using NONMEM version VI �.

Creation of the Reduced and Reduced Corrected Data Sets

For each of the nine initial data sets, in order to mimic
the omission of observations below the LOQ, various fixed
percentages of the lowest data set observations were omitted
in order to obtain reduced data sets. Six percentage values
were used: 5%, 10%, 20%, 30%, 40%, and 50%.

For each reduced data set, a corresponding “corrected”
data set was created. A correction procedure was applied in
order to prevent or limit any potential bias created by the
omission of the values below LOQ. For each subject, all the
observations but the first one below the LOQ were omitted.
The first observation below the LOQ was given the value of
half of the LOQ value. This approach is the one used as
method M6 by Beal and Sheiner (9). Its rationale is to provide
the model with some information for the measurements be-
low LOQ by addition of a point below the LOQ. This value
of half LOQ was chosen assuming a normal distribution of the
measurements in the interval [0,LOQ]. It is assumed that the

variabilities estimated around the typical values of the param-
eters as well as the residual error can deal with the a priori
uncertainty of this assigned value below LOQ. The reduced
corrected data sets were analyzed with and without addition
of an additional additive residual error component devoted to
these values below LOQ.

Thus, nine groups of data sets with one original data set,
six reduced data sets, and six “corrected” data sets were cre-
ated.

Real Data Set

A real data set with data from 97 subjects and 270 ob-
servations, obtained after multiple intravenous bolus doses,
was also used to assess the impact of informative missingness
caused by LOQ. In the same manner as for the simulated data
sets, six reduced and six corrected data sets were generated.

A two-compartment model (ADVAN3 TRANS4) with
IIV in CL and central volume was used to describe the data.
After a logarithmic transformation of the data, an additive
residual error model was applied.

Parameter Estimation

For both simulated and real data sets, we estimated the
pharmacokinetic parameters using NONMEM VI � with a
first-order (FO) estimation method as well as the FO condi-
tional with (FOCE-INTERACTION) and without (FOCE)
interaction estimate methods. The difference between these
estimation methods is based on the estimation of the indi-
vidual parameters. All three methods apply linearization ap-
proximations, and the difference between FO and FOCE is
that in the former linearization occurs around the population
estimate, whereas in the latter it occurs around the individual
parameter estimate. The difference between FOCE with and
without interaction is that individual and population param-
eter estimates, respectively, are used in the residual error
model; in the case this includes a prediction based on param-
eter values. The results were processed in Splus 2000 (10). For
all the simulated data sets, the results were expressed as a
percentage of deviation of the fixed-effect parameter esti-
mates from the theoretic typical values.

(Estimated value − Theoretical typical value)/
Theoretical typical value

Regarding the real data set, fixed-effect results were ex-
pressed as a percentage of deviation from the estimated value
with the whole data set.

RESULTS

Simulated Data Sets

The nine data sets were simulated, and based on them
the “reduced” data sets and the “reduced corrected” data sets
were created. This study aimed to investigate the impact of
the omission of values below LOQ on a structural bias. There-
fore, the influence on the IIVs was not extensively investi-
gated. As consequence, the runs were considered as success-
ful when the minimization step succeeded. Successful termi-
nations including estimation of standard errors (SEs) were
obtained for the nine full data sets (Table II) and for the
majority of the data sets with omission or replacement of data
below LOQ. Some terminated data sets with rounding errors

Table I. Primary Parameters Used for Each Set of Simulations
Depending on Both AUC and Half-Life Ratios

Half-life ratio

AUC ratio

0.1 0.2 0.3

0.3 CL 10 20 30
Vc 270 454 588
Q 3.22 8.1 11.9
Vp 29 119 202

0.1 CL 10 20 30
Vc 175 238 270
Q 20 33 37
Vp 128 308 460

0.03 CL 10 20 30
Vc 79 89 93
Q 52.5 60 57
Vp 222 448 615
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were considered successful if the minimization step succeeded
and the rounding error was related to the IIV. The IIVs on
the distribution parameters were difficult to assess when val-
ues below LOQ were omitted, even with the correction pro-
cedure, although the random effect on CL could be estimated
in most of the cases. It became difficult to assess when the
percentage of omitted values was over 40% and when the
distribution and the elimination phases were hardly differen-
tiated (i.e., the following structures: half-life ratio of 0.3 and
half-life ratio of 0.1; AUC ratio of 0.1) (Table III).

When the values below the LOQ were omitted, the es-
timated parameters were shifted. The estimated clearance
was lower than the theoretical one, shown as a decrease in the
percentage of deviation (Fig. 1). This difference increased
when the percentage of omitted values below LOQ increased.
This shift of the estimated clearance seems to be amplified
when the half-life ratio value increases. A similar decrease in
the estimated clearance appeared with the three estimation
methods implemented in NONMEM: FO, FOCE (not
shown), and FOCE interaction (not shown). Regarding the
IIV on CL, the same trends appeared with a decrease of the
estimated coefficient of variation. This influence of the LOQ
seems to be related to the half-life ratio as well (Table III).

The estimated CL for the corrected reduced data sets
were similar to the theoretical values as shown with a small
percentage of deviation, whatever the percentage of omitted
values was (Fig. 1). Similarly, the correction procedure al-
lowed a better estimation of the IIV for clearance.

The percentage of deviation of the typical values for Vc

and Q (Table IV) did not show any major trends on the
influence of both the omission of values below LOQ and the
correction procedure for those two parameters.

Table II. Fixed Effect of the Parameter Estimates and the Related
Standard Error (in Italics) of the Estimates for the Nine Full

Data Sets

Half-life ratio

AUC ratio

0.10 0.20 0.30

0.30 CI 9.41 20.20 28.40
0.03 0.03 0.03

Vc 274.00 461.00 595.00
0.05 0.05 0.06

Q 1.34 6.38 11.50
0.72 0.24 0.17

Vp 17.20 110.00 176.00
0.70 0.14 0.15

0.10 CI 9.43 18.90 28.50
0.03 0.05 0.04

Vc 190.00 265.00 302.00
0.08 0.09 0.11

Q 16.50 28.90 34.70
0.27 0.15 0.13

Vp 106.00 274.00 425.00
0.17 0.21 0.16

0.03 CI 10.50 19.10 31.60
0.04 0.03 0.04

Vc 88.20 100.00 108.00
0.34 0.21 0.16

W 55.00 68.30 67.90
0.38 0.08 0.15

Vp 236.00 452.00 636.00
0.17 0.05 0.06

Table III. Estimates of the Interindividual Variability on Clearance Depending of the Percentage of
Omitted Values below LOQ and the AUC and Half-Life Ratios (Simulated IIV � 0.25)

Below
LOQ (%)

AUC ratio

0.10 0.20 0.30

Deletion Correction Deletion Correction Deletion Correction

0.30 0 0.23 0.23 0.23
5 0.23 0.24 0.22 0.21 0.23 0.21

10 0.23 0.24 0.21 0.21 0.21 0.20
20 0.22 0.24 0.10 0.21 0.18 0.21
30 0.19 0.23 0.12 0.19 0.15 0.19
40 0.00* 0.23 0.00* 0.17 0.12 0.15
50 0.00* 0.20 0.00* 0.14 0.00* 0.17

0.10 0 0.24 0.24 0.24
5 0.22 0.22 0.23 0.23 0.23 0.23

10 0.17 0.22 0.20 0.22 0.21 0.22
20 0.13 0.21 0.17 0.21 0.18 0.21
30 0.08 0.20 0.11 0.20 0.12 0.21
40 0.04 0.15 0.08 0.16 0.09 0.17
50 0.00a 0.12 0.04 0.16 0.07 0.16

0.03 0 0.30 0.30 0.30
5 0.31 0.31 0.29 0.29 0.23 0.22

10 0.30 0.30 0.29 0.29 0.22 0.22
20 0.27 0.31 0.29 0.29 0.20 0.23
30 0.27 0.32 0.31 0.28 0.19 0.21
40 0.23 0.29 0.13 0.27 0.19 0.20
50 0.26 0.27 0.09 0.26 0.21 0.20

a For these estimations, no IIV could be estimated on clearance.

Parameter Estimates in a Two-Compartment Model 1837



The estimated peripheral volume (Fig. 2) was overesti-
mated when the values below LOQ were omitted. The greater
the half-life ratio, the greater the influence of omitted values.
As for CL, once the correction procedure was applied, a de-
crease in the percentage of deviation was observed. The ter-
minal half-life, calculated from the other parameters, consis-
tently showed a positive bias (Fig. 3).

The real data set also showed a decrease of the estimated
CL with an increase of the percentage of omitted values be-
low LOQ. However, the bias induced by the omission did not
appear so clearly for the peripheral volume (Fig. 4).

DISCUSSION

This study demonstrates that bias on typical values of the
parameters may result from omitting data below the LOQ in
a two-compartment model. Previous modeling exercises have
shown comparable results for the one-compartment model
(8,9). However, the magnitude of the bias can be considerably
higher with two-compartment models. The magnitude of the
bias depends on the pharmacokinetic characteristics of the
drug (AUCr and half-life ratio), the value of the LOQ (per-
centage of omitted values), the parameter in question, and,
although not investigated here, most likely the dosing and
sampling schedules. As can be expected, bias increases with
increased percentage of omitted values. For CL, a bias >20%
could be observed for some data sets with omission of 20% of
all observations. This is no guarantee that a marked bias may
not occur at a lower fraction omitted for other situations.
Regarding the sign of the bias, some general conclusions

Table IV. The Percentage of Deviation for Typical Values of Vc and Q Are Presented Depending of the Percentage of Omitted Values and
the Method Used to Deal with the BLQ Values

AUC ratio

0.10 0.20 0.30

H
al

f-
liv

es
ra

ti
o

BLQ
(%)

� Vc � Q � Vc � Q � Vc � Q

Dele-
tion

Correc-
tion

Dele-
tion

Correc-
tion

Dele-
tion

Correc-
tion

Dele-
tion

Correc-
tion

Dele-
tion

Correc-
tion

Dele-
tion

Correc-
tion

0 0.01 −0.58 0.02 −0.21 0.01 −0.03
5 −0.01 0.01 −0.59 −0.58 0.03 0.01 −0.27 −0.16 0.02 0.02 −0.37 −0.03

10 −0.13 0.01 0.18 −0.56 0.06 0.04 −0.40 −0.26 −0.01 0.02 −0.28 −0.01
0.30 20 −0.10 0.02 0.38 −0.51 0.02 0.04 −0.18 −0.29 −0.06 0.00 0.00 −0.02

30 −0.11 −0.01 0.70 −0.14 −0.02 −0.02 0.22 0.13 −0.09 −0.01 0.31 0.11
40 −0.08 −0.07 1.76 0.13 −0.04 −0.02 0.96 0.07 −0.07 −0.04 0.50 0.39
50 −0.07 0.00 1.90 −0.02 −0.04 −0.04 0.96 0.23 −0.04 0.05 1.59 −0.13

0 0.09 −0.18 0.11 −0.12 0.12 −0.06
5 0.23 0.09 −0.73 −0.16 0.19 0.12 −0.39 −0.12 0.13 0.12 −0.19 −0.06

10 0.28 0.09 −0.72 −0.17 0.24 0.12 −0.49 −0.12 0.19 0.12 −0.30 −0.05
0.10 20 0.20 0.10 −0.65 −0.16 0.29 0.13 −0.52 −0.11 0.26 0.14 −0.35 −0.06

30 0.17 0.11 −0.58 −0.16 0.28 0.12 −0.45 −0.07 0.21 0.14 −0.25 −0.02
40 0.13 0.24 −0.49 −0.56 0.15 0.23 −0.28 −0.27 0.16 0.22 −0.16 −0.14
50 0.x23 0.22 −0.33 −0.53 0.14 0.22 −0.22 −0.25 0.11 0.22 −0.07 −0.12

0 0.12 0.05 0.12 0.14 0.16 0.19
5 0.16 −0.12 0.06 −0.16 0.22 0.12 0.06 0.14 0.13 0.17 0.16 0.19

10 0.18 −0.11 0.06 −0.17 0.12 0.13 0.01 0.14 0.13 0.16 0.11 0.18
0.03 20 0.35 −0.09 −0.01 −0.16 0.27 0.12 0.02 0.14 0.13 0.17 0.08 0.13

30 0.35 −0.09 −0.10 −0.13 0.31 0.05 0.10 0.14 0.16 0.23 0.08 0.15
40 0.30 −0.13 −0.14 −0.12 1.25 0.04 0.07 0.10 0.24 0.22 0.11 0.14
50 0.32 −0.14 −0.06 −0.18 1.07 0.06 0.14 0.12 0.32 0.16 0.16 0.11

Fig. 1. Simulated data sets. Deviation from the typical value of CL vs.
the percentage of observations below LOQ for the reduced data set
(�) and the corrected data set (�).

Duval and Karlsson1838



across the studied situations can be made. When biased, CL is
generally underestimated, as omission is mainly of data from
subjects having a high CL. For peripheral volume of distribu-
tion, the opposite is true. Subjects with a small peripheral
volume of distribution tend to have a shorter terminal half-
life and therefore have concentrations declining below LOQ

earlier than others. The peripheral volume is therefore gen-
erally overestimated when biased. As a consequence of the
bias in CL and peripheral volume, terminal half-life is often
overestimated. For one data set, the terminal half-life esti-
mate was twice the true value with only 10% of data omitted
as below LOQ. For central volume and intercompartmental

Fig. 3. Simulated data sets. Deviation from the theoretical value of
elimination half-life vs. the percentage of observations below LOQ
for the reduced data set (�) and the corrected data set (�).

Fig. 4. Real data set. Percentage of deviation from the estimated
values regarding the percentage of values below LOQ for the reduced
data set (�) and the corrected data set (�).

Fig. 2. Simulated data sets. Deviation from the typical value of Vp vs. the percentage of
observations below LOQ for the reduced data set (�) and the corrected dataset (�).
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CL, parameters for which the majority of the information is
contained in the early part of the concentration–time profile,
bias is not as pronounced, and the direction of bias varies
dependent on pharmacokinetic profiles. Situations in which
distribution and elimination phases are not readily distin-
guishable amplified the bias on parameters. In addition, the
sparse sampling strategy adopted with a 12-h delay between
the samples was another obstacle to the estimation of the Q
and Vc even with the full data set. The distribution half-life is
40 min for a half-life ratio of 0.03 (Table II).

The correction procedure generally performed well with
considerably less bias than simple omission of data on typical
values of the parameters, although somewhat less well for the
real data set than for the simulations. The results on random
effects are not as good. IIV in CL seems to be the only vari-
ability estimate markedly improved by the correction proce-
dure. These results on IIV could have been anticipated be-
cause replacing the different values below LOQ by one spe-
cific value does not allow one to take into account any IIV on
these latest measurements. So in both cases, omission and
correction, there seems to be a loss of information on IIV.
Furthermore, the less information in the data set, the more
the model is overparameterized in terms of IIV, which often
leads to rounding errors related to some IIVs on Q, Vc, or Vp

that could not be estimated. It occurred with both reduced
and corrected data sets.

This correction procedure was adapted from a suggestion
made by Dr. Lewis Sheiner at the nmusers listserver (http://
www.phor.com/nonmem/nm/index.html) and had already
been applied by Beal and Sheiner (M6 method) (9). In the
original suggestion, the addition of the first observation below
LOQ was accompanied by the addition of an additive residual
error term. The magnitude of this error was set to one-fourth
of the LOQ value assuming a normal distribution of the ad-
ditional point below LOQ around the value of LOQ/2. Such
an additional error term did not improve the performance of
the correction procedure in the present analysis. Because the
main purpose of the investigation was to assess the influence
of the structure of a two-compartment model on the bias with
sole omission of data below LOQ, we did not explore other
types of correction procedures. Correction procedures based
on more sophisticated calculations of single replacements or
methods based on multiple imputation (11) may well be more
robust and take into account the data imputation in the esti-
mates of parameter precision.

All the data sets have been simulated with a proportional
error model. This was done to maximize the impact of omis-
sion of the data. For data where residual error is relatively
higher at low concentrations, low observations do not contain
as much information, and thus, omission of such data will not
have the same impact. Using an exponential residual error
model will, on the other hand, be maximally unfavorable for
the correction procedure that assumes a proportional error
structure only. This is because the substitution of the first
observation with a value of LOQ/2 is likely to deviate from
the predicted concentration by a larger (relative) residual
than other observations.

Noncompartmental methods to estimate pharmacokinet-
ic parameters generally handle heteroscedasticity poorly. Be-
cause including data below LOQ would increase heterosce-
dasticity, it is understandable that omission of data below
LOQ has become standard for such analyses. However, with

nonlinear mixed-effects models, heteroscedasticity can be
handled appropriately, and a better correction procedure may
well be to make use of all data, including those below the LOQ.

This study is of limited size because its main aim was to
investigate the relationship between the structure of a two-
compartment model and the bias induced by the omission of
values below LOQ. Only one type of pharmacokinetic model
was investigated (two-compartment disposition model), and
for each combination of pharmacokinetic characteristics, the
results of only one simulated data set was reported. However,
all the main conclusions based on the simulated data sets were
evident when the simulations were replicated twice with dif-
ferent random number seeds (data not shown). This low num-
ber of replications does not allow us to obtain some statistics
but only to be able to identify some trends on the biases of the
typical parameters and the influence of the structure of the
two-compartment model on these biases.

CONCLUSION

This study demonstrates that omitting the values below
the limit of quantification may create a substantial bias in the
estimation of the typical values of the parameters for the case
of an IV bolus infusion in a two-compartment model. Param-
eters do not have the same sensitivity to the omission of the
value below LOQ, with the major impact on clearance, pe-
ripheral volume, and terminal half-life. The magnitude of the
bias depends of the underlying structure of the model. Models
with two hardly distinguishable phases were more sensitive to
the omission of values below LOQ. It follows that all the
values below LOQ could not be simply ignored without tak-
ing the risk of model misspecification. Easy to implement, this
simple correction procedure considerably decreased the bias
on the typical values of the parameter estimates. Regarding
the IIV, the procedure seems to improve the estimation of the
IIV on CL; nevertheless, its benefits on the other parameters
require further investigation.
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